

±0.5ppm, excellent phase noise, low ageing, wide frequency range.

Manufactured to standard and custom specifications over the frequency range of 1MHz to 1GHz.

Precision crystals provide outstanding long term ageing from ±4.6ppm over 10 years.

Standard options: frequency range:	1MHz ~ 1GHz				
accuracy codes:	(A)	(B)	(C) —		
temperature tolerance	±0.5ppm	±1.0ppm	±2.0ppm		
temperature range	(0 +50)°C	±1.0ppm (-20 +70)°C	(-40 +70)°C		
output codes:	(S)		(L)		
output	sine wave, 0dBm into	50Ω CM	10S 15pF, 45% ∼ 55%		
harmonics -30dBc max.	<2ns max. rise and fall				
supply voltage codes:	(V1)*	(V2)*	(V3)*		
supply voltage		+5.0Vd.c.			
voltage reference option*		+3.0Vd.c.			
	*add suffix (R) for V _{ref} output on pin #2				
Generic specification: stability:					
against supply voltage change	±0.0)2ppm max. for V_{cc}	±5%		
against load change	±0.02ppm max. for load ±10%				
ageing short term		±0.005ppm max. per day			
		days continuous o	•		
ageing long term	±1.5ppm max. first year				
voltage trim V_t	±10ppm min. typical, linearity ±5%				
trim input impedance	100K Ω min.				
power supplies:					
supply voltage V_{cc}	+3.3Vd.c.	+5.0Vd.c.	+12.0Vd.c.		
supply current	50mA max. frequency dependent				
insulation resistance	500Meg $Ω$ min., 100Vd.c.				
phase noise:					
single sideband, 1Hz bandwidth	-80dBc/Hz, f _o +10Hz -100dBc/Hz, f _o +100Hz				
to we work we want	-	125dBc/Hz, f _o +1kH	Z		
temperature: operating range	(0 , 50)00	(-10 +60)°C	(40 , 70)°C		
	10 +001 (-	1=1() +O() (,			

Environmental conditions:

mechanical shock: MIL standard 202F, method 213, condition J thermal shock: MIL standard 202F, method 107, condition A vibration: MIL standard 202F, method 204, condition B

solderability: 5 seconds max. at +230°C, 3 seconds max. at +350°C

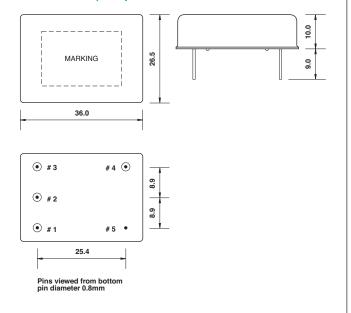
Marking: part number and frequency on high temperature

metalised polyester label

Ordering code:

standard specification: TA936-10 A S V2* - 6.40M

TA936-10 = series generic code


A temp. tol. and temp. range code: $A = \pm 0.5 ppm(0 + 50)^{\circ}C$ output code: $S = sine wave output, 0dBm into <math>50\Omega$

V2* supply voltage code: V2 = +5Vd.c. supply

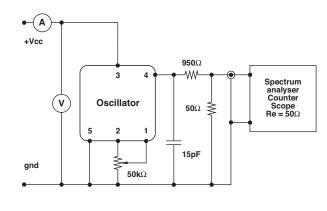
*add suffix (R) for V_{ref} output on pin #2 output frequency: **16.384M = 16.384MHz**

Custom specification: part number issued with custom specification and drawing

Dimensions(mm):

Pin connections:

1 trim


#2 n.c. or trim reference voltage*

#3 +V_

#4 output

#5 ground

Test circuit, CMOS load:

test circuit includes a 20:1 step down into a matched 50Ω load

